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AbslrecL We invesligale a class of linear mulliplintive stochastic differential equations 
and demonstrate the existence of a slriking noise-induced transilion in lhe SlNClUre of 
the mul l ing asymplotic slationary probabilily distribution far the dependent variable. 
?he lransilion amounu Lo a change from a bounded distribulion lo an unbounded one 
with only a finite number of mnvergent momenls. I1 occurs when the range of Rucluation 
of one of the variables driven by lhe underlying stochastic process increaser sufficient?. 
10 permit changes of sign far the variable. I1 reems likely Ulal the phenomenon is a 
general one and nrun in a wider dass of models than that discussed in this paper. 
We obtain explicit m u l l s  for simple c a y s  which we mnfim by appmpriale numerical 
simulalions. This gives us the apporlunily of assessing Uie applicability of perturblion 
theory which is one of the few ulculalional methods employed on lhere models up until 
"ow. 

1. Introduction 

There are many applications of stochastic differential equations [l, 21. One motivation 
for our investigation is our interest in the Pope equation [3, 41 for the development 
of curvature of material elements swept along in random and turbulent flows [S, q. 
A >c4xJ,,U appr,Lanurr WILL, WlllC,, wc a,= W I I C G I I I c U  w L" L l l G  >,a"= cyUa"uLLJ W*LL,CI, 

are part of the Langevin simulation method for evaluating quantum field theory and 
statistical field theoretic systems [7]. Both these applications involve equations which 
can be interpreted as linear multiplicative stochastic equations. These motivating 
applications are not important for the purposes of this paper; however we feel that the 
subject and the results are of more general interest than these particular applications 
and therefore worth presenting separately. In this paper then we shall be concerned 
with linear multiplicative equations. In principle the ideas could with appropriate 
modifications be applied to any polynomial type of equation. 

In section 2 we introduce the modcl stochastic differential equations we wish to 
study. Detailed analysis of these equations is presented in sections 3 and 4. We apply 
the methods to some simple explicit examples in section 5 and illustrate these results 
with a few numerical simulations in section 6. In section 7 we examine limits in which 
the correlation time of the undcrlying stochastic process becomes either very small or 
very large relative to other time scalcs in the problem. We assess the applicability of 
perturbation methods based on those limits. Wc conclude with a brief discussion of 
our results together with some suggestions for extending and generalizing the analysis. 

. ̂̂̂ .._A "..-I:,....:-.. ..2*L __..:,.I. "-- ,.-..-,.-..-A :" .̂  1L^ '^I^..^ ^^.. .̂:̂̂̂s ... L:^L 
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2. Linear multiplicative stochastic diRerential equations 

We wish to study equations of the form 

$ = -A(t)y + B ( t ) .  (1) 

In its mast general form y and B ( t )  would be vectors and A(t )  a matrix. We 
comment on this general version of the problem at the end of the paper but for 
the mast part we wish to consider the one-dimensional case where y, A and B are 
scalar quantities. The idea behind the equation is that A( t )  and B ( t )  are subject to 
statistical Ructations. From a knowledge of the statistical properties of A and B we 
are to infer the statistical properties of y implied by equation (1). We will investigate 
the following model for the ensemble governing the statistical properties of A and B.  
We assume they are both functions of a Markovian stochastic process ( ( t )  that takes 
values in a parameter space which may be discrete. The process E is characterized 
by a stationary probability distribution Q(t) and develops in time by changing its 
value with a constant probability per unit time of T-'. This means that ( holds its 
value constant during each of a sequence of time intewals the lengths of which are 
independently distributed according to a Poisson distribution. Within each interval ( 
b distributed independently according to Q(0. 

For any stochastic process we can define an operator A, which plays the role of 
the Laplacian in standard diffusion processes, by the requirement 

Af(E) = E[f( t ( l+ h ) )  - f (F ( i ) ) lF ( t )  = F1 (2) 

where E ( X ( Y J  means the expectation of X subject to condition Y. The equation 
for the time development of the probability distribution P ( ( , t )  is 

where At k the Hermitian conjugate operator to A. For the process <(i) it is easy 
to verify that 

A f ( t )  = + ( /WQ( t ' ) f ( t ' )  - f ( 0 )  

A t f ( t )  = 7 ( Q ( t ) / a E ' f ( E ' )  - f ( E ) ) .  

(4) 

where d c  is the appropriate measure over the parameter space for F .  The Hermitian 
conjugate operator is given by 

( 5 )  

Equation (3) becomes 

(6) 
-p(E, t )  a = ( Q ( t ) / d t ' p ( € ' , t ) -  P ( F , t ) ) .  
at  

Clearly P ( ( , t )  = Q(t)  is indeed the static solution of this equation. Equation (6) 
is often referred to as a master equation for P(<,i). 
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Expectation values in the static limit of a quantity F ( f ( t ) )  is 

(F(E(2))) = / d E Q ( € ) F ( E ) .  (7) 

The corresponding result for the correlation function G ( h )  = ( H ( E ( t + h ) ) F ( E ( t ) ) )  
is 

G ( h )  = e-'/ '(H(E(t)F(t(t)) + (1 - e-"')(H(E(t))(FiE(1)). (8) 

Gc(h) = e -h / 'Gc(0 )  (9) 

We have then 

where the suffix C indicates that we are dealing with the cumulant part of the 
correlation function. It is clear then that T is the correlation time for the process. 

When we adjoin equation (1) to the stochastic process E ( t )  we have to deal with 
a joint probability distribution P(c, y, 1) for both F and y. It satisfies the 'diffusion' 
equation 

a a 
zP(E, ~ , t )  = ay [A(E)Y - B(F)I P(E9 ~ , t )  + At P(E> Y, 1 ) .  (10) 

The first term on the right of equation (10) is a 'drift' term obtained from the 'velocity 
field' for y implied hy equation (1). A static solution (assuming it exists) of equation 
(10) satisfies 

where we have used (5) and dropped explicit mention of 1. 
We simplify the problem yet further by assuming that the stochastic process F ( 1 )  

assumes values in a finite set { t l . E 2 , .  . . , E N )  with probabilities { q l . q 2 . .  . . ,qN] .  
The joint probability distribution P(F, y) is replaced by the discrete set of probabili- 
ties {pl(y),p2(y),. .. ,pN(y)), which satisfy a discrete version of (11) 

where a, = A(<,) and On = Et([,,). If we introduce an obvious matrix notation 
in which A and B become diagonal N x N matrices with entries {al, a*, . . . , a N )  
and {PI, p2 , .  . . , P N }  respectively and q and p(y) denote column vectors of the 
appropriate probabilities, then (12) becomes 

ji3j a , .  1 ,. - ( A y  - E )  p(y)  = ;(I - quT)p(y) 
a y  

where U is a column vector with N unit entries, uT is the corresponding mw vector 
and 1 represents the appropriate unit matrix. This is the form in which we will 
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study our original linear multiplicative stochastic differential equation (1). Note these 
results 

uTq = 1 (14) 

UT(1 -GUT)  = 0 = ( 1  - GILT). 

and 

(15) 

We also have the normalization condition 

/duv(u )  = q. (16) 

In this matrix notation the expectation values of A(1) and B(1) are given by (A) = 
u T A q  and (E) = uTBq.  

3. Analysis d the model equations 

Some qualitative observations on  the nature of the static probability distribution are 
clear from (1). If the ranges of values assumed by A([) and B([) are both finite 
and in addition A(F) is strictly positive then for sufficiently large and positive y 
the velocity y will be negative and for sufficiently large and negative y the velocity 
will be positive. It follows that any y which starts out in these regions will be 
swept into a central region in which y acquires fluctuating values. Clearly the static 
probability distribution for y will be confined to this central region and vanish outside 
it. However when A([) undergoes changes of sign this argument can no longer 
be used. As we will see the probability distribution for the dependent variable y 
changes character. Its support spreads out and ceases to be confined to a central 
range. Applied to our simple Ncomponent model this argument implies that when 
all {an) are strictly positive the static probability distribution has its support in the 
range min{&/a,} < y < max{Pn/an)  but when any of {a,,) becomes negative 

one case to another is accompanied by changes in the character of the distribution. 
As will be shown later the distribution acquires an inverse power-law tail for large y. 
This affects the structure of the moments of the distribution. For n sufficiently large 
(y") will be divergent. This change of behaviour is of the greatest significance for 
the applications in which we are interested. 

From (13) we see immediately that 

this i$ !!e b!!ger the C2se. n.is ChlngP i!? scppnrt nf t!?e prm!bi!ity d&trib.tin!! f" 

(17) 
a 
a y  
- u T ( A y - B ) p ( y ) = O .  

where It' is a constant. In fact IC  must vanish since in order for each p,(y) to be 
integrable at infinity it must satisfy yp,,(y) + 0 as y + 00. For polynomial equations 
of a degree higher than one, however, this argument no longer applies. 
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The analysis of (13) is clearest if we move to Fourier transform space. We define 

z (w)  = dye-iWY P(Y) (19) J 
so that 

Note that because of (16) 

Equation (13) becomes 

1 
r Z ( W )  = - (1 - quT) Z ( w ) .  

Reclme q ~ ~ t i n n  (18) holds with I( = 0 there are no hidden uaps in this equation 
and we can conclude the apparently obvious result 

The point here is that were K not to vanish we would have had an extra term 
proportional to IC6(w) on the right-hand side of this equation. As it stands we see 
that either as (22) or (23) the equation is (in the vector sense) a standard first-order 
differential equation with a regular singular point at w = 0 and an irregular singular 
point at w = 00. There are therefore N linearly independent solutions. We can 
classify the members of a basis either by their behaviour as w - 0 or alternatively as 
w + m. Both versions are useful. 

The general theory of differential equations tells us that there is a solution of the 
form 

where the coefficients dn) are N-component vectors. From (22) we find for the 
indicia1 equation 

A predictable solution has U = 0 and I(") = q.  In general U must satisfy 
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Solutions for U lie at the zeras of the factor Y ( a )  given by 

For clarity of exposition we will ignore marginal situations in which one or more of the 
{a,} vanish. We can recover these situations by an appropriate limiting procedure. 
There are then essentially two situations of interest: (i) all {a,} positive; (ii) some 
{a,,) negative. If all a, are strictly positive and distinct then all N poles of Y ( u )  
lie on the negative a-axis. Because Y(u) --t 1 as U - m and because the poles 
have negative residues there is no zero to the left of the leftmost pole. The rightmost 
zero is the special case U = 0 mentioned earlier. The positions of the other zeros 
interlace the positions of the poles and are therefore strictly negative. When one of 
.I.- r -  1 L..~,....~~ .m+nt:..n *:-+-A ..,.I- __.. ~" .,. .ha D ~ , . . . . . ~ ~  
LLIG TU,, L h C U L l l G . 3  ,,cgarr*r L l l r  -a"rLaLGu p 1 c  lllUIW UI UlG pa,,,"* MO. YCMUJG 

its residue has also changed sign and become positive there is now no zero to the 
right of this pole. The associated zero lies to the left of the pole and will initially 
lie on the positive axis. As the value of the relevant a, becomes more negative 
the pole moves left with the associated zero remaining to the left of the pole. The 
position of this zero may coincide with the special solution U = 0 and may ultimately 
become negative. The condition for this coincidence is Y'(0) = 0. The condition 
for the zero to remain positive is Y'(0)  > 0. As other a, become negative so their 
associated poles move to the positive axis and their residues undergo a change of sign. 
The resulting situation is one in which the positive axis poles have interlacing zeros, 
none to the right of the rightmost pole and a remaining zero between the rightmost 
negative pole and the leftmost positive pole in addition to the special zero at U = 0. 
T&I preclude this last zero from returning to the negative axis we will constrain the 
parameters in Y ( a )  so that Y'(0) > 0. The situation when two {a,) coincide is 
special. In that case Y ( u )  loses one of its poles and one of its zeros. However the 
other factors in the expression for the determinant in (26) yield a double zero which 
cancels the coincident pole and turns it into the remaining zero. Essentially then there 
are always N solutions for U .  We will denote these solutions by {u1,u2,.  . .,U,.,,) 
with ul = 0. They may he substituted back into the indicia1 equation (25) to yield 
the corresponding solution for do). The rest of the series can he computed from the 
recurrence relation implied by (22), which can he put in the form 

[(I + T ( n  + 0 + 1 ) ~ )  - quT] dTL+') = -TB&).  (28) 

This can he solved for d n + l )  in terms of d") to give 

where D, = 1 + r ( n  + a + 1)A. 
The asymptotic behaviour of the solutions in the limit w - m (we assume positive 

real m for definiteness) can he analysed hy substituting an appropriate asymptotic 
series into (22). We set 
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7he implication of (22) for the first two terms in the series is 

( S A  - E) X(O) = 0 (31) 

and 

(32) ) 1 
AA - - ( I  - quT) X(O) + ( S A  - B) X(’) = 0. 

( 7  

A aii,j D” aie ,jiagoiia; (31) aiiri;y soived. E,e ex-poiieni s .Gke oiie 
of the values {s, = &/a,) and X(’) correspondingly becomes one of the set {e,,) 
where e,, is a column vector with unity in the nth place and zeros everywhere else. 
By taking a scalar product of (32) with X(O) we see that it implies 

(33) 
X(’)= (AA- -(1 1 - quT) 

r 

When s = s, and A’(’) = e,, this implies that X = A,, = (1  - q,,)/ra,,. 
One way  of thinking about the N linearly independent solutions of (22) is to 

regard them = the columns of an N x N matrix. For example we can amalgamate 
the N solutions defined by their behaviour near the origin into a matrix @ ( w )  which 
satisfies the equation 

(34) 
1 
r 

@ ( w )  = - (1 - quT) @(U). 

In a similar way we could form the N solutions that are specified by their asymptotic 
behaviour as w - M into a matrix Q ( w )  which satisfies the same equation. We 
immediately obtain a differential equation for det @(U) or det *(U). It is 

1 
i r w  

a 
--et @(U) = -Tr A - ’ E  + -A- ’ ( l -  quT) 
aiw 

and det *(U) satisfies the same equation. By normalizing the basis solutions in an 
appropriate way we can arrange for the solution of this equation to be 

N 

det @(U) = det @ ( w )  = exp{- iws,](iw)-” (36) 
n = l  

N where A = 
transformation between them represented by a matrix S such that 

A,. Because both sets of solutions are complete there is a linear 

@ ( w )  = @ ( w ) S  (37) 
and with these choices of normalization we see that det S = 1. Now from the 
behaviour of the columns of CD(w) near zero it can be inferred that 

det @(U) - (iw)’ (38) 
N where C = 

that 
U,,. Comparing this result with (3G) as w - 0 we can conclude 
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A Reconstruction of the probability distribution 

In order to reconstruct the probability distribution p (  y) we make use of (22). The 
nature of the resulting distribution reflects the structure of Z(W) in both the limits 
discussed in the previous section. Consider first the case for which all the {an) are 
strictly positive. All the {U,,) are strictly negative except for u1 which vanishes. The 
corresponding solution is the only candidate that has the right properties at w = 0 
9 be ident;fied with the Exrier s?!!sfc!rm nf p(y). .As cm bc see.". frnm n71 \"'l thir -.- 
solution is a superposition of those solutions specified by their asymptotic behaviour 
at large w. That is, for an appropriate set of coefficients [c,,), we have 

N N 
Z(W) = c , , + ( ~ ) ( u  f ic) - ~ , e " ~ " " ( w  &ic)-A"e(n). (40) 

n=1 n=1 

The addition of f i e  (where c is an arbitrarily small positive quantity) to w in this 
formula is intended to indicate how the analytic continuation from positive to negative 
values of w negotiates the singularity at w = 0 in each of the terms in the sums in 
(40). Because the sum as a whole has no singularity at w = 0 the choice of + or - 
is arbitrary so long as it is made consistently for all the terms in the sum. We can 

range as predicted by our preliminary discussion in the previous section. We have 
iiGw sho-w .wky ihe piGazg,ky &iaii+G~ion p (  Mnsaes i&nt;c2!p4' ou$ifle a zit$,n 

If we make the negative choice then a typical term in the integrand will asymptotically 
have the form 

n ei4Y-S.)(w - i e ) - L ,  (42) 

wniour be ui 'uie io.wei wp;ane  ihus eiiiiii:iiig singu;aiids, FiGfi 
The w-integration contour lies below the singularity at w = 0. When y < sn this 

Cauchy's theorem we can conclude that the contribution to p(y) from this term in 
the integral is zero. When y > s, the exponential factor does not permit the contour 
to be closed in the lower half w-plane. Closure in the upper half U-plane results in 
an enfolding by the integration contour of the singularity at w = 0 together with its 
attached branch-cut giving rise to a non-zero contribution to p (  y)  from this term for 
y > s,. We have then the following picture: assuming the choice of -ic, for y < 
min{s,} none of the terms in the sum in (41) yields a non-vanishing contribution. As 
we increase y through the range mints,) < y < max{s,) the terms are 'switched 
on' one by one. At this point it would appear that when y > max[sn)  all the 
terms contribute. In a sense this is the case. However we can show that in fact 
they sum up to zero. We do this by recalling that the choice between + and - is 
completely arbitrary. If we switch to the + choice we are not changing the value of 
the integral hut we are able, when y > rnax{,s,t) to close the integration contour 
in the upper half w-plane and, because of the absence of encircled singularities, to 
use the Cauchy argument to conclude that the resulting integral is again zero. It 
follows that our Fourier transform argument allows us to confirm what we argued on 
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intuitive grounds in the previous section, that when all {a,,] are strictly positive the 
support for p(y) lies in the range min{s,] < y < max(s,,] and that p(y) vanishes 
identically outside this range. 

When one of the {a,,) becomes negative two things happen simultaneously: 
(i) one of the (U,,] becomes positive, the corresponding solution then vanishes 

at w = 0; and 
(ii) one of the (An]  becomes negative and the corresponding solution blows up 

&'$ &, 

U, returns to the negative axis.) The boundary condition at w = 0 no longer picks 
out a unique solution since the requirement that z(0) = q is satisfied by 

x. p \+J! T,Zifl'Jifl the c=fldi:io:. y'[c)  ; n tG PJ;.Oi(j s*;a:i;.O;.& L7 .#E,<k 

for any value of the coefficient p.  However we can determine p by adjusting its 
value so that z (w)  no longer has any contribution from the solution that blows at 
infinity. If two of the {a"} become negative then there are two linearly independent 
solutions that vanish at w = 0. Now there are two parameters in the expression for 
.(U). However now two of the {A,,] have become negative so there are two linearly 
independent solutions which must be excluded from contributing to z(w). The two 
above parameters can be chosen to bring about this condition. Similar reasoning can 
be applied for any number A4 of negative {a,,} provided 0 < M < N - 1. If all 
of the {a,,} are negative then it is impossible to construct a physically acceptable 
solution for .(U). Although the parameter count works for M in the above range 
it is not strictly possible at the present level of abstraction to prove that there really 
is a physically acceptable solution for these values of M. However if we make the 
assumption that there is a static probability distribution of the kind we seek then the 
proceedure we have described must find it. 

Because we chose to specify the solutions Q ( w )  by means of their asymptotic 
behaviour to the right, the above analysis only establishes the physical solution on 
the positive real w-axis. The nature of the solution on the negative real w-axis is 
determined by enforcing the requirement 

which is a necessary and sufficient condidition for the distribution p(y)  to be real. 
Whatever the detailed structure of the physical solution at the origin it is clear 

that the non-analyticity introduced by the additional contribution to z ( w )  affects 
the asymptotic behaviour of p(y) for large y. From standard analysis of Fourier 
integrals a contribution with a singularity at w = 0 that behaves as (U), will produce 
asymptotic behaviour of the form 

Clearly the dominant asymptotic term will come from the contribution to z ( w )  with 
the smallest (positive) value of U " .  This change in the nature of the support for 
p(y) from hjte to infinite range 'together with-the associated power-law fall-off as 
IyI -+ m is the major qualitative feature of these multiplicative stochastic differential 
equations. It represents a situation in which the distribution changes from having all 
its moments finite to one in which all the moments beyond a certain degree do not 
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exist. It may be the case that the variance or even the mean of the distribution does 
not exist. 

Fourier transform analysis also tells us that a contribution to X ( W )  with an asymp- 
totic form given in (42) will yield a term in p( y) which behaves as 

P(Y) - lY - QnIA"- l  as y - s,. (6) 

This indicates the nature of the non-analyticity of p(y) at the points y = s, where 
the various contributions to the probability distribution are switched on and off. The 
implication for the first and last contributions which control behaviour at the ends of 
the range of support for p( y) is particularly clear. 

We will now illustrate these results by means of simple examples together with 
appropriate numerical simulations. 

5. Specific examples 

5.1. Two-component model 

The very simplest case, which can treated completely explicitly, is the twocomponent 
case with N = 2. Except for special cases a shift in origin of y simply adds a 
multiple of the unit matrix to the matrix E. We will take advantage of this to set one 
of the elements of B to zero since this simplifies the algebra without losing anything 
essential. We therefore choose 

A 0  0 0  
'=(O p )  .=(O E )  .=(:) (47) 

where r + s = 1. According to the general theory set out in the previous sections 
we expect that when both 01 > 0 and p > 0 the support of p( y) will lie in the range 
0 < y < p / p  and when p < 0 the range will be extended to 0 < y < M. From its 
definition in (27) we find in this case that 

S - r .,I -, 
I (U) = 1 - 

1 + u r a  1 + u r p  

The roots of Y ( u )  are U = u1 = 0 and U = u2 = - ( r / T p  + s/r01).  Clearly as 
p passes through zero the second root changes sign from negative to positive and 
remains positive so long as IpI < r a / s .  Provided that this condition is respected 
we can apply this general theory to predict that when the probability distribution 
changes form it acquires for large positive y a power-law dependence of the form 
p(y) - y-'-O>. These predictions will now be confirmed explicitly. 

If we set 

then the recurrence relation (29) for the case U = 0 implies 
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and 

The solution of these recurrence relations leads to the result 

These solutions for U and v are confluent hypergeometric functions. In standard 
notation we have 

T lFl((s/ra),(s/ra) + ( T / ~ P )  + 1,-(O/p)iw) 

It is easy to verify that the other linearly independent solution specified by its be- 
haviour at w = 0 is, up to a normalization, 

( r / . r a ) , F , ( - ( s / s p ) ,  1 - ( s / r a )  - (T/Tp),-(0/P)iw) 

(55) 

where U = u2 = - ( ( s / r a )  + ( r / r p ) ) .  The asymptotic behaviour as w - 00 of the 
solution in (54) is to leading order 

The second solution in (55) has the asymptotic form 
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n o m  (56) it is clear that when both a > 0 and p > 0 the solution ,$( I ) (w) is 
sufficiently bounded at large w that it can be interpreted as the Fourier transform 
of a probability distribution. Using the standard representation of the confluent 
hypergeometric function we see that 

With an appropriate scaling of the integration variable 1 this becomes immediately a 
Fourier expression with the result 

for 0 < y < p / p  and p ( y )  = 0 for y outside this range. It is also clear from (56) 
that & ) ( w )  ceases to be Fourier transformable when p becomes negative. However 
as predicted from the general theory u2 becomes positive at this p i n t  and from 
(57) we see that we can mnstruct a Fourier transformable function with the correct 
normalization by forming the combination 

When -a < p < 0 this solution has an integral representation of the form 

som d u  . - ( P / I P l ) i W ~ u ( ~ / ~ * ) - l  ( 1  + u)-(r /r lpl)  

((a/ lpi)sTd u e - ( P / I p l ) i u u , ( ~ / ~ a ) (  1 + u)-(r/+l)-l 

Again after appropriate scaling of the integration variable U we see that this S a 
Fourier transform formula which implies that 

and p ( y )  = 0 for y < 0. 
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5.2. Three-contponent niodel 

It is not in general easy to obtain explicit results for multi-component models. How- 
ever there is a fairly general three component model which can be treated in a 
complete fashion and which reveals something of the complexity of the more elabo- 
rate models. We choose 

/ a  0 o \  / o  0 o \  / r \  

where r + 2 s  = 1. 
We find for the determinant function Y ( u )  

The two solutions of this equation are U = u1 = 0 and U = u2 = - ( r / rp+2s / ra ) .  
The remaining solution of the indicia1 equation is the common value of the coincident 
poles of Y(u) namely U = u3 = - ( l / rp ) ,  For the case in which both a > 0 and 
p > 0, the Fourier transform of the probability distribution has the series expansion 

The recurrence relation equation (29) implies for this case 

The latter two of these equations may be expressed in the convenient form 

and 

I n  this form it is easy to solve the recurrence relations to yield the result 



and 

By making use of identities of the form 

and 

we can derive integral representations for the solutions 
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and 

then we can express these solutions as 

.(W) = c-Fl  - +I,- r 1  - , p iw)  
a (:: Z r p ' 2 r p  p 

w ( w ) - w ( w ) = C T 2  

The integral representation for F in (SO) allows us to compute its asymptotic 
behaviour for large imaginary argument. There are contributions to the asymp- 
totic behaviour from certain sub-regions near the boundary of the integration region. 
These sub-regions are the two corner regions ( t , u )  - (1 - O ( W 1 ) , l  - O(C2-I)) 
and (?,U) - (1 - O ( W 1 ) , - l  + O(fi- ')),  together with the boundaly strip 
( t  - o(Q- l ) , - l  < U  < I). The result is 

These results imply contributions to the leading behaviour for w 3 03 as follows 
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where 

and 

According to the general theory we can infer that our probability distribution 
vanishes outside the range -P /p  < y < p / p  and at the end points behaves as 
p(y) - Iy f p / p l ( l - a / ' p )  while in the neighbourhood of y = 0 we have p(y)  - 
ly[(l-r/ra). We can easily find a representation for p(y)  by Fourier transforming 
z(w). It i convenient to define 

which yields 

P I 1 
$,(a ,b ,c ,y)  = / d t  / 6 ( y -  - tu)  ta - ' ( l  -t2)b-1u"-1(1 - U')'-'. (91) 

J O  J - 1  \ P I 

After eliminating the delta-function by performing the u-integration and making the 
following change of integration variable 

we find 

a-2c-1 (, l P I Y I \ 2 \ * + c - *  

{L - \PI ) 
P fPlYl\ 
2p (7) 

, c , c + b - -  X F  C-- 
2 ( (93) 

where F is the standard hypergeometric function. The behaviour of G,, at y = -+P/p 
is immediately evident from this equation. Its behaviour near y = 0 can be inferred 
from the general theory of the hypergeometric function. The relevant part of its 
behaviour is G,, - IyIa-'. Using equations (81)-(83) the probability distribution can 
be expressed as 
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By making use Of the information in these equations it is straightfonvard to verify 
the predicted behaviour of p (  y). 

This analysis only holds when p > 0. When p < 0 the asymptotic behaviour of 
.(U) for w -t m becomes more singular and it ceases to be a Fourier transformable 
function. One sign of this change is that the integral representations for the compo- 
nents of .(U) in (81)-(83) cease to be convergent as a result of divergences at the 
boundaries where t = 1 or U = 1. We can extract a representation of the new form 
of .(U) from these old representations by detaching the 1- and u-integration con- 
tours from the end points t = 1 and U = 1 ,  rotating them in their respective complex 
p h e S  t + e'(*/')t and U -+ e - i (* /2 )u  and subsequently extending the contours to 
infinity. The resulting representations for the components of z ( w )  are 

where 

They are convergent when p < 0 since the original boundary giving rise to the 
dgergence has been eliminated and the integrands vanish as t -t m and U + 00 

at least for an appropriately restricted range for p. We will not examine the new 
probability distributions in detail but it is already clear that the support extends to 
infinity and has a power-law fall-off p(y)  - ~y~('-r~r~)-(r~'~~~). 
6. Numerical simulations 

Whatever the complexities of this analysis it is easy to simulate these simple models 
of multiplicative stochastic differential equations. We have plotted the distributions 
appropriate to the transformed variable 0 where y = tan(0/2) in order to contain 
the whole graph in a finite range. The results for the two-component model are shown 
in figure 1 for the parameter set a = 1 , p  = 1,p  = 1 and T = 0.5.  The plotted 
points represent the heights and centres of histogram blocks of width rr/20. StatistiGI 
errors are smaller than the size of the plotted points. Note that as predicted, when 
p > 0 the distribution does indeed vanish beyond the point 0 = n/4 which for these 
parameters corresponds to y = p / p .  The results are compared to the predictions 



2290 I T Dmmmond 

0.12 

0.1 

0.08 

0.06 

0.w 

0.02 

0.16 

0.14 

- 

- 

- 

- 

- 

- I  

0 0.5 1 1.5 2 2.5 3 
01 

e 
Figure 1. ?he probability distribution for the twoamponen1 model with parameters 
01 = 1, p = 1, p = 1 and r = 0.25. The Simulation mulls are indimled by (0) and 
the exact resulls by (x). 

e 
Figure L The simulalion mul ls  for the probability distribution for the twocomponent 
model. The paramelem are 01 = 2 ,  p = 1 and T = 0.1. The values for p a r e  indicated 
by (+) for p = - 1 ,  (0) for p = -1 .3 ,  (x) for p = -1.5.  

of the exact probability distribution for the histogram. The comparison is relatively 
good even though there is a small systematic error on some of the central points. 
Figure 2 exhibits the distribution for negative values of p. Note that as p is reduced 
the distribution is increasingly biased to 0 = T which corresponds to y -+ w. 

It is clear from figures 3 and 4 that similar results are obtained for the three- 
component model where the passage from bounded to unbounded support for p (  y)  
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is again observed as p passes from positive to negative values. Results from the 
simulation of models with larger numbers of components exhibit the Same qualitative 
behaviour. 

e 
Figure 3. l h e  simulation results for the probability distribution for the three component 
model with parameters 01 = 1, p = 3 ,  p = 1 and r = 0.25. Note thal the distlibution 
vanisha beyond the p i n t  8 = n/4 in agreement with the Uleorelical prediction. 

0.1 

0.09 

0 

Figure 4 lhe simulation results for the probabiliiy distribution for the three mmponent 
matel with parameters OL = 4 ,  p = -1  and 0 = 1. l h e  values for p are indicated bj 
(+) for r = 0.1. (x) for r = 0.125, (0 )  for 7 = 0.15. 
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I. Perturbation theory 

In the limit in which T + 0 we can expect the total probability distribution for y 
P(y), to obey a diffusion equation. We can get some understanding of the nature of 
this limit by examining the twocomponent model. We have for the case a > 0 and 
P > 0, 

7b leading order in l / r  

The stationary point of +( y) occurs where the derivative 

This occurs a t  the point y = yo where 

S P  

= ra t s p '  

We also have 

The asymptotic shape of the distribution is a Gaussian 

In the limit of small 7 the mean of the distribution is (y) = yo and the wriance 
U: ,., O(T) .  This suggests we can derive a diffusion equation for P(y) for values 
oi y = yo + O(d?j. we can achieve this using a perturiiation metnod by setting 
y = yo + f i z  in (10). The equation for p(y) becomes 

We now expand p (  y)  as a power series 
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On substituting this expansion into (105) and equating the coefficients of (6)" to 
zero we find 

O = - ( l - q  UT) P d Z )  (107) 

(108) 
a 

O = - ( A Y O - B ) P O ( ~ ) -  az ( l - q u T ) p l ( ~ )  

From (107) we see that p o ( z )  = qP,(r) .  Multiplying (108) on the left by uT and 
using this form for po(r )  we find 

a 
O =  -Pa( z )uT(Ayo-  az B ) q .  (110) 

Since a/azPo(z) does not vanish identically we must choose yc so that 

uT(Ayo  - B ) q  = 0.  (1 11) 
- 

That is yo = u'"Bq/uTAq = ( B ) / ( A ) .  We can also conclude from (108) that if we 
set p l ( z )  = q P l ( z )  + ~ ~ ( 2 )  where uTrl(z)  = 0 then 

Multiplying (109) on the left by uT we find 

?fanslating back into the original variables and using the approximation P(y) = 
f i P , ( r )  we find 

This is very close to the effective diffusion equation derived by van Kampen [l] using 
a similar perturbation method. However in our derivation we have tried to embody 
the idea that such an equation can only be valid in a neighbourhood of the point yo. 

involving higher derivatives than the second. The static solution of this equation is 
were we to attempt a higher approximation we wou!d obtain an equatia!! fnr P(y)  
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l 3 r  the twocomponent model (A) = r a  + sp and ( B )  = s p .  This sets yo = 
s p / ( r a  + s p )  which is indeed the centre of the limiting distribution we calculated 
previously. We also have ((Ay, - E)') = r s a 2 p 2 / ( r a  + sp)' which leads to the 
variance appropriate to the form of the limiting distribution in (104). In this sense 
the perturbatively derived effective diffusion equation correctly describes the small 
7-limit The diffusion process naturally cannot be described when far away from the 
neighbourhood of the Gaussian peak. In this connection it is interesting to examine 
rLn t:-.:*:-- CA- ,d thn .tnr:n-n-. A:o+Ak..+:nm ..,ha- 
L U G  u,,,,rurg LULL,, ", L l l r  "L.aL.U".a,J " W L l l " Y L I " l l  W,,L,, p : n. we hwe koiii (62) 

In the limit T -+ 0 the asymptotic shape of P(y) is 

'Ihis is really the same as (104) with p + - 1 ~ 1 .  It follows immediately that the right- 
hand side of (118) satisfies (115) the effective diffusion equation. However it should 
he noted that the application of the Limit T + 0 is non-uniform because of the nature 
of the original probability distribution in this case. We recall what is obvious from 
(117) namely, that because the distribution now has a power-law fall-off as y - CO, 

(y") will, for sufficiently large n, cease to exist. This remains true for any value of T 

no matter how small. As T -+ 0 the value of n for which (y") diverges, goes to CO. 

Nevertheless there could be a situation in which T was small enough for the Gaussian 
shape in (116) to be a good approximation for y near yo but for (y") to diverge for 
some relevant value of n. 

The limit of T --t CO is also of interest and we will give a brief discussion of it. 
When T - m (22) becomes 

i w ( - L  A - B  ) z ( w ) = O .  aiw 

Because of the boundary condition z(0) = y, the correct solution is 

z ( w )  = exp {-A-'Biw} y.  (120) 

This leads to a total probability distribution 

We can see how this comes about in the two component model for the case a > 0 
and p > 0. Tkking account of the relevant factors in the normalization constant in 
(59) we see that for large T 
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For large T this distribution is O ( l / s )  except for the strong peaks at y = 0 and 
y = p/p.  In the limit T -+ 03 the peaks do become 6-functions and the probability 
distribution does assume the predicted form 

This mechanism is similar to one discussed in a previous paper [SI. When similar 
reasoning is applied to the case where p < 0 we see from (117) that the only peak is 
at y = 0 and the probability distribution acquires the form 

The interpretation of this result is that, although P(y) away from y = 0 is O(~/T), 
the total weight in the pwer-law tail is s. This fraction of the ensemble is driven 
off to infinity as 7 -+ 03. Another way of saying this is that the predicted s-function 
at y = - p / I p [  is unstable in the Sense that the y-velocity field diverges from rather 
converges on this point. 

8. Conclusion 

We have investigated a class of linear multiplicative stochastic differential equations. 
An important property of these equations is the occurrence of a transition in the 
nature of the probability distribution for the dependent variable as some of the 
parameters of the controlling stochastic process are changed. The effect resembles a 
noise-induced transition but is dependent on the range of the relevant variables in 
the stochastic process rather than their means and variances. The transition is of a 
dramatic character in that the probability distribution changes from one with all its 
moments finite to one with at most a finite number of convergent moments as the 
result of the appearance of an inverse power-law tail for large values of the dependent 
variable. We illustrated these results with appropriate numerical simulations. 

The tractability of the analysis of the stochastic differential equation depended 
on the simplification that the driving stochastic process took its values in a finite set, 
which we refer to as components. We were able to obtain explicit representations 
for the solutions for a two- and a three-component model. Success in the three- 
component case encourages us to believe that it should prove possible to obtain 
integral representations for the solutions of N-component models. This certainly is 
a problem worth pursuing since its solution would provide a basis for attacking those 
problems in which the driving stochastic process takes values that are denumerably 
infinite or continuously distributed. The basic phenomenon of transition from a 
confined distribution to a strongly extended distribution must occur more generally 
and it would be of great interest to obtain knowledge of such effects. One can Visualize 
the power-law tail in the probability distribution being modified by logarithmic factors, 
for example. 

In this paper we restricted our attention to equations where the dependent vari- 
able was a scalar quantity. Of even more interest are problems where this variable 
itself is a vector quantity. Ttansition phenomena of a similar kind must also occur in 
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this vector case. One way of seeing this is to examine the equation for the length of 
the vector variable. We have for the (vector) y 

where IMW A(1) is a matrix and B(1)  is a vector. The length of y is F = m. 
If we set y = Ew where w is a unit vector in the direction of y then we find 

This equation bears a resemblance to the original stochastic differential for a one- 
dimensional variable. Relying on this analogy we can conclude that if the length of B 
i$ bounded and if the eigenvalues of the symmetric part of A are positive and not too 
broadly distributed then the resulting distribution for E should be essentially bounded 
at least in the sense of having an entire set of finite moments. However if the 
symmetric part of A can acquire negative eigenvalues we expect (uTAu) to fluctuate 
in sign and as a consequence, the resulting distribution for E to become extended and 
develop a power-law tail as E - 03. A phenomenon of this kind has been observed 
in the simulation of curvature evolution in material elemenu transported in random 

Finally we draw attention to the point that for parameter ranges of the driving 
stochastic process which result in a bounded distribution for the dependent variable 
the perturbation analysis in terms of powers of the correlation time works well in 
the neighbourhood of the Gaussian peak. For cases where the dependent variable 
acquires a broadly spread distribution the perturbation series works only in a non- 
uniform way and may require care in its application. 

flows [3, 4, q. 
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